

Notes on Hooke's Law & Elastic Potential Energy

Hooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from it's relaxed position. In equation form, F = kx.

Elastic Potential Energy = energy stored in the spring.

We need to find an expression to calculate the *potential energy* in the spring. To do this, we make use, once again, of the **area under** the curve. In this case, we use the formula for triangles, $A = \frac{1}{2} bh$.

Area – Work done on spring
=
$$\frac{1}{2}$$
 x F = $\frac{1}{2}$ x (kx) = $\frac{1}{2}$ k x²

= the elastic potential energy of the spring. $E_{pe} = 1/2 \text{ kx}^2$ = the work done to *compress* or *stretch* the spring.

This method is very useful for calculating the work done on an object by a *variable* force, ie a force that's a function of time (or something else)... in essence, calculus.

Created by Mr. Jeff Alaimo